Berikutini adalah contoh dari sistem persamaan dua variabel: x - y = -4 . Persamaan 1 x 2 - y = -2 . Persamaan 2 Penyelesaian dari sistem ini adalah pasangan berurutan yang di mana akan memenuhi masing-masing persamaan dalam sistem tersebut. Sistempersamaan kuadrat dan kuadrat atau disingkat dengan SPKK merupakan sistem persamaan yang terdiri atas dua persamaan kuadrat yang masing-masing memuat dua variabel. Untuk sistem persamaan linear dan linear dua variabel tidak kita bahas karena sudah dibahas pada materi program linear beserta dengan soal ceritanya. Supayamakin paham sama materi SPLDV, kita langsung masuk ke contoh soal pertidaksamaan linear dua variabel kelas 10 dan pembahasannya ya. Yuk, siapkan alat tulisnya untuk corat-coret! Contoh 1 Perhatikan bentuk persamaan dan pertidaksamaan di bawah ini: 5x 2 + 7x + 8 ≥ 6 2x + 4y = 7 5x + 9y ≤ 20 Videoini membahas contoh soal sistem persamaan linear dua variabel (SPLDV) dengan metode subtitusi dan pembahasannya.Contoh soal.Misalkan (a, b) = (a1, b1) Contohsoal sistem persamaan linear kuadrat dua variabel pada umumnya dapat diselesaikan dengan beberapa metode. Metode yang digunakan ini memiliki beberapa langkah seperti berikut: Langkah pertama yaitu melakukan substitusi persamaan y = ax + b menuju persamaan y = px² + qx + r. Dengan begitu kita dapat membentuk persamaan kuadrat. DaYm8ZC. Sebelumnya, mari kita sepakati penggunaan istilah dalam materi ini dulu. Sistem persamaan yang terdiri atas sebuah persamaan linear dan sebuah persamaan kuadrat yang masing-masing bervariabel dua disebut sistem persamaan linear-kuadrat SPLK. Berdasarkan karakteristik dari bagian kuadratnya, SPLK dikelompokkan sebagai berikut. SPLK dengan bagian kuadrat berbentuk eksplisit. SPLK dengan bagian kuadrat berbentuk implisit. SPLK Dengan Bagian Kuadrat Berbentuk Eksplisit Bentuk umum SPLK dengan bagian kuadratnya berbentuk eksplisit dapat dituliskan sebagai berikut. $$\begin{cases} y & = ax + b && \text{bagian linear} \\ y & = px^2 + qx + r && \text{bagian kuadrat} \end{cases}$$dengan $a, b, p, q, r$ bilangan real dan $a, p \neq 0.$ Sistem ini dapat diselesaikan dengan cara mensubstitusikan persamaan linear ke persamaan kuadrat, kemudian disederhanakan dan diselesaikan dengan menggunakan metode pemfaktoran, melengkapkan kuadrat, atau rumus ABC. Secara umum, penyelesaian dari SPLK tersebut dapat ditentukan dengan melalui langkah-langkah berikut. Langkah 1 Substitusikan bagian linear $y = ax+b$ ke bagian kuadrat $y = px^2+qx+r$, diperoleh $$\begin{aligned} ax + b & = px^2+qx+r \\ px^2+qx-ax+r-b & = 0 \\ px^2+q-ax+r-b & = 0 \end{aligned}$$Persamaan terakhir merupakan persamaan kuadrat satu variabel, yaitu $x$. Selesaikan persamaan kuadrat tersebut untuk mencari nilai $x$. Langkah 2 Nilai-nilai $x$ yang didapat pada Langkah 1 tadi jika ada disubstitusikan ke persamaan $y = ax+b$ agar perhitungannya lebih mudah, untuk memperoleh nilai $y$. Kita ingat bahwa nilai $x$ yang memenuhi persamaan kuadrat $px^2 + q-ax + r-b = 0$ disebut akar-akar dari persamaan kuadrat itu. Banyak nilai $x$ banyak akar dari persamaan kuadrat tersebut ditentukan oleh nilai diskriminan $D = q-a^2-4pr-b$. Dengan demikian, banyak anggota dalam himpunan penyelesaian SPLK $$\begin{cases} y = ax+b \\ y = px^2+qx + r \end{cases}$$ditentukan oleh nilai diskriminan $D$ dengan aturan berikut. Jika $D > 0$, maka SPLK tersebut mempunyai dua anggota dalam himpunan penyelesaiannya. Jika $D = 0$, maka SPLK tersebut mempunyai satu anggota dalam himpunan penyelesaiannya. Jika $D 0$, maka garis memotong parabola di dua titik yang berlainan. Jika $D = 0$, maka garis memotong parabola tepat di satu titik. Dengan kata lain, garis itu menyinggung parabola. Jika $D < 0$, maka garis dan parabola tidak berpotongan. Perhatikan gambar kedudukan garis $y = ax+b$ dan parabola $y = px^2+qx+r$ berikut agar lebih jelas. SPLK dengan Bagian Kuadrat Berbentuk Implisit Persamaan dua variabel $x$ dan $y$ dikatakan berbentuk implisit jika persamaan itu tidak dapat dinyatakan dalam bentuk $y = fx$ atau $x = fy.$ Persamaan implisit dinyatakan dalam bentuk $fx, y = 0.$ Contoh persamaan dua variabel dalam bentuk implisit adalah sebagai berikut. a. $x^2+y^2+8 = 0$ b. $x^2+2y^2-3x+y = 0$ c. $x^2-y^2-3x+4y+9 = 0$ d. $2x^2+xy+y^2+3y-4 = 0$ Secara umum, SPLK dengan bagian kuadratnya berbentuk implisit dapat dituliskan sebagai berikut. $$\begin{cases} px+qy + r = 0 & \text{bagian linear} \\ ax^2+by^2 + cxy + dx + ey + f = 0 & \text{bagian kuadrat berbentuk implisit} \end{cases}$$dengan $a, b, c, d, e, f, p, q, r$ semuanya merupakan bilangan real dan $p, q, a, b \neq 0.$ SPLK dengan bagian kuadrat berbentuk implisit dibagi menjadi dua, yaitu bentuk implisit yang tak dapat difaktorkan dan bentuk implisit yang dapat difaktorkan. Baca Juga Soal dan Pembahasan – SPLDV Berikut ini disajikan beberapa soal mengenai sistem persamaan linear dan kuadrat, disertai dengan pembahasannya. Semoga bermanfaat. Today Quote Students don’t need a perfect teacher. They need a happy teacher, who’s gonna make them excited to come to school and grow a love for learning. Bagian Pilihan Ganda Soal Nomor 1 Penyelesaian dari sistem persamaan $$\begin{cases} y & = 3x-5 && \cdots 1 \\ y & = x^2-5x+7 && \cdots 2 \end{cases}$$adalah $\cdots \cdot$ A. $-2, 1$ dan $6, 13$ B. $-2, -1$ dan $6, -13$ C. $2, -1$ dan $-6, 13$ D. $2, 1$ dan $6, 13$ E. $2, 1$ dan $-6, -13$ Pembahasan Pertama, cari titik potong dari grafik kedua persamaan tersebut. $$\begin{aligned} y & = y \\ x^2-5x+7 & = 3x-5 \\ x^2-8x+12 & = 0 \\ x-6x-2 & = 0 \\ x = 6~\text{atau}~x & = 2 \end{aligned}$$Substitusi nilai $x$ ke persamaan $1$, yaitu $y = 3\color{red}{x}-5$. $$\begin{aligned} x = \color{blue}{6} & \Rightarrow y = 36-5 = \color{blue}{13} \\ x = \color{green}{2} & \Rightarrow y = 32-5 = \color{green}{1} \end{aligned}$$Jadi, penyelesaian sistem persamaan linear-kuadrat tersebut adalah $6, 13$ dan $2, 1$. Jawaban D [collapse] Baca Juga Soal dan Pembahasan – Sistem Koordinat Kartesius Soal Nomor 2 Himpunan penyelesaian dari SPLK $\begin{cases} x+y = 0 \\ x^2+y^2+8 = 0 \end{cases}$ adalah $\cdots \cdot$ A. $\{2, -2, -2, 2\}$ B. $\{-2, -2, 2, 2\}$ C. $\{4, -4, -4, 4\}$ D. $\{2, -4, -4, 4\}$ E. $\{2, 2, 4, 4\}$ Pembahasan Diketahui SPLK $$\begin{cases} x+y = 0 & \cdots 1 \\ x^2+y^2-8 = 0 & \cdots 2 \end{cases}$$Persamaan $1$ dapat ditulis menjadi $y = -x$. Substitusikan pada persamaan $2$. $$\begin{aligned} x^2+\color{red}{y}^2-8 & = 0 \\ x^2+-x^2-8 & = 0 \\ x^2+x^2 & = 8 \\ 2x^2 & = 8 \\ x^2 & = 4 \\ x & = \pm 2 \end{aligned}$$Jika $x = 2$, maka diperoleh $y = -2$. Jika $x = -2$, maka diperoleh $y = 2$. Jadi, HP SPLK tersebut adalah $\boxed{\{2, -2, -2, 2\}}$ Jawaban A [collapse] Soal Nomor 3 Misalkan penyelesaian SPLK $\begin{cases} x-y+1 = 0 \\ x^2+y^2-13 = 0 \end{cases}$ adalah $a, b$ dan $c, d$. Nilai $a+b+c+d = \cdots \cdot$ A. $-3$ C. $0$ E. $12$ B. $-2$ D. $3$ Pembahasan Diketahui SPLK $$\begin{cases} x-y+1 = 0 & \cdots 1 \\ x^2+y^2-13 = 0 & \cdots 2 \end{cases}$$Persamaan $1$ dapat ditulis menjadi $y = x+1$. Substitusikan pada persamaan $2$. $$\begin{aligned} x^2+\color{red}{y}^2-13 & = 0 \\ x^2+x+1^2-13 & = 0 \\ x^2+x^2+2x+1-13 & = 0 \\ 2x^2+2x-12 & = 0 \\ x^2+x-6 & = 0 \\ x+3x-2 & = 0 \\ x = -3~\text{atau}~x & = 2 \end{aligned}$$Jika $x = -3$, maka diperoleh $y = -2$. Jika $x = 2$, maka diperoleh $y = 3$. Jadi, penyelesaian SPLK tersebut adalah $-3, -2$ dan $2, 3$ sehingga nilai $$\boxed{a+b+c+d = -3+-2+2+3 = 0}$$Catatan Karena yang ditanyakan adalah jumlah dari $a, b, c, d$, maka masing-masing nilainya tidak perlu dipermasalahkan bila ditukar-tukar, sebab hasil penjumlahannya pasti sama. Jawaban C [collapse] Soal Nomor 4 Titik koordinat yang termasuk penyelesaian dari sistem persamaan $\begin{cases} y & = 2x+5 \\ y & = x^2-3 \end{cases}$ adalah $\cdots \cdot$ A. $-4, 13$ D. $2, -1$ B. $-2, 1$ E. $4, 11$ C. $0, -4$ Pembahasan Pertama, cari titik potong dari grafik kedua persamaan tersebut. $$\begin{aligned} y & = y \\ x^2-3 & = 2x+5 \\ x^2-2x-8 & = 0 \\ x-4x+2 & = 0 \\ x = 4~\text{atau}~x & = -2 \end{aligned}$$Substitusi masing-masing dua nilai $x$ tersebut ke persamaan $y = 2x+5$ sehingga diperoleh $$\begin{aligned} x = 4 & \Rightarrow y = 24 + 5 = 13 \\ x = -2 & \Rightarrow y = 2-2 + 5 = 1 \end{aligned}$$Jadi, titik potongnya adalah $4, 13$ dan $-2, 1$. Titik potong adalah titik koordinat yang merupakan penyelesaian dari sistem persamaan tersebut. Jawaban B [collapse] Soal Nomor 5 Penyelesaian dari sistem persamaan $$\begin{cases} x-y = 2 & \cdots 1 \\ x^2+16y^2-24xy-16 = 0 & \cdots 2 \end{cases}$$adalah $\cdots \cdot$ A. $6, 4$ dan $\left\dfrac{12}{7}, -\dfrac{2}{7}\right$ B. $6, 4$ dan $\left\dfrac{2}{7}, -\dfrac{12}{7}\right$ C. $-4, -6$ dan $\left\dfrac{2}{7}, -\dfrac{12}{7}\right$ D. $-4, -6$ dan $\left\dfrac{12}{7}, -\dfrac{2}{7}\right$ E. $-4, -6$ dan $6, 4$ Pembahasan Ubah persamaan $1$ menjadi $$x = 2 + y~~~~\cdots 3$$Substitusi persamaan $3$ pada persamaan $2$. Kita peroleh $$\begin{aligned} \color{blue}{x}^2+16y^2-24\color{blue}{x}y-16 = 0 \\ 2+y^2+16y^2-242+yy-16 & = 0 \\ y^2+4y+4+16y^2-48y-24y^2-16 & = 0 \\ -7y^2-44y-12 & = 0 \\ 7y^2+44y+12 & = 0 \\ 7y+2y+6 & = 0 \\ y = -\dfrac27~\text{atau}~y & = -6 \end{aligned}$$Substitusi nilai $y$ ke persamaan $1$, yaitu $x = 2+\color{red}{y}$. $$\begin{aligned} y = \color{blue}{-\dfrac27} & \Rightarrow x = 2+\color{blue}{-\dfrac27} = \dfrac{12}{7} \\ y = \color{green}{-6} & \Rightarrow x = 2+\color{red}-6 = -4 \end{aligned}$$Jadi, penyelesaian sistem persamaan linear-kuadrat tersebut adalah $-4, -6$ dan $\left\dfrac{12}{7}, -\dfrac27\right$. Jawaban D [collapse] Baca Juga Soal dan Pembahasan – SPLTV Soal Nomor 6 Himpunan penyelesaian SPLK $$\begin{cases} 2x+3y = 8 \\ 4x^2-12xy+9y^2 = 16 \end{cases}$$adalah $\cdots \cdot$ A. $\left\{1, 2, \left3, \dfrac23\right\right\}$ B. $\left\{2, 1, \left3, \dfrac23\right\right\}$ C. $\left\{1, 2, \left\dfrac23, 3\right\right\}$ D. $\left\{2, 1, \left\dfrac23, 3\right\right\}$ E. $\emptyset$ Pembahasan Diketahui SPLK $$\begin{cases} 2x+3y = 8 & \cdots 1 \\ 4x^2-12xy+9y^2 = 16 & \cdots 2 \end{cases}$$Persamaan $2$ merupakan bagian kuadrat yang dapat difaktorkan sebagai berikut. $$\begin{aligned} 4x^2-12xy+9y^2 & = 16 \\ 2x-3y^2 & = 16 \\ 2x-3y^2-4^2 & = 0 \\ 2x-3y+42x-3y-4 & = 0 \\ 2x-3y+4 = 0~\text{atau}~2x-3y&-4 = 0 \end{aligned}$$Dengan demikian, SPLK tersebut dapat dipecah menjadi dua SPLDV berikut. SPLDV pertama $$\begin{cases} 2x+3y & = 8 \\ 2x-3y + 4 & = 0 \end{cases}$$dengan penyelesaian $1, 2$. SPLDV kedua $$\begin{cases} 2x+3y & = 8 \\ 2x-3y-4 & = 0 \end{cases}$$dengan penyelesaian $\left3, \dfrac23\right$. Jadi, himpunan penyelesaian SPLK tersebut adalah $\boxed{\left\{1, 2, \left3, \dfrac23\right\right\}}$ Jawaban A [collapse] Bagian Uraian Soal Nomor 1 Carilah himpunan penyelesaian dari tiap SPLK berikut. a. $\begin{cases} y & = 6-5x \\ y & = x^2 \end{cases}$ b. $\begin{cases} y & = x+3 \\ y & = x^2-5x+8 \end{cases}$ c. $\begin{cases} y & = 3x-8 \\ y & = x^2-3x \end{cases}$ d. $\begin{cases} y & = x+1 \\ y & = x^2+x \end{cases}$ Pembahasan Jawaban a Diketahui $$\begin{cases} y & = 6-5x && \cdots 1 \\ y & = x^2 && \cdots 2 \end{cases}$$Substitusikan persamaan $1$ pada persamaan $2$ sehingga diperoleh $$\begin{aligned} x^2 & = 6-5x \\ x^2+5x-6 & = 0 \\ x+6x-1 & = 0 \\ x = -6~\text{atau}~x & = 1 \end{aligned}$$Dengan demikian, kita akan dapatkan nilai $y$ jika masing-masing nilai $x$ ini disubstitusi pada salah satu persamaan, misalnya $y = x^2$. $$\begin{aligned} x = -6 & \Rightarrow y = -6^2 = 36 \\ x = 1 & \Rightarrow y = 1^2 = 1 \end{aligned}$$Jadi, HP SPLK tersebut adalah $\boxed{\{-6, 36, 1, 1\}}$ Jawaban b Diketahui $$\begin{cases} y & = x+3 && \cdots 1 \\ y & = x^2-5x+8 && \cdots 2 \end{cases}$$Substitusikan persamaan $1$ pada persamaan $2$sehingga diperoleh $$\begin{aligned} x^2-5x+8 & = x+3 \\ x^2-6x+5 & = 0 \\ x-5x-1 & = 0 \\ x = 5~\text{atau}~x & = 1 \end{aligned}$$Dengan demikian, kita akan dapatkan nilai $y$ jika masing-masing nilai $x$ ini disubstitusi pada salah satu persamaan, misalnya $y = x+3$. $$\begin{aligned} x = 5 & \Rightarrow y = 5+3 = 8 \\ x = 1 & \Rightarrow y = 1+3 = 4 \end{aligned}$$Jadi, HP SPLK tersebut adalah $\boxed{\{5, 8, 1, 4\}}$ Jawaban c Diketahui $$\begin{cases} y & = 3x-8 && \cdots 1 \\ y & = x^2-3x && \cdots 2 \end{cases}$$Substitusikan persamaan $1$ pada persamaan $2$ sehingga diperoleh $$\begin{aligned} x^2-3x & = 3x-8 \\ x^2-6x+8 & = 0 \\ x-2x-4 & = 0 \\ x = 2~\text{atau}~x & = 4 \end{aligned}$$Dengan demikian, kita akan dapatkan nilai $y$ jika masing-masing nilai $x$ ini disubstitusi pada salah satu persamaan, misalnya $y = 3x-8$. $$\begin{aligned} x = 2 & \Rightarrow y = 32-8 = -2 \\ x = 4 & \Rightarrow y = 34-8 = 4 \end{aligned}$$Jadi, HP SPLK tersebut adalah $\boxed{\{2, -2, 4, 4\}}$ Jawaban d Diketahui $$\begin{cases} y & = x+1 && \cdots 1 \\ y & = x^2+x && \cdots 2 \end{cases}$$Substitusikan persamaan $1$ pada persamaan $2$ sehingga diperoleh $$\begin{aligned} x^2+x & = x+1 \\ x^2-1 & = 0 \\ x+1x-1 & = 0 \\ x = -1~\text{atau}~x & = 1 \end{aligned}$$Dengan demikian, kita akan dapatkan nilai $y$ jika masing-masing nilai $x$ ini disubstitusi pada salah satu persamaan, misalnya $y = x+1$. $$\begin{aligned} x = -1 & \Rightarrow y = -1+1 = 0 \\ x = 1 & \Rightarrow y = 1+1 = 2 \end{aligned}$$Jadi, HP SPLK tersebut adalah $\boxed{\{-1, 0, 1, 2\}}$ [collapse] Baca Juga Soal dan Pembahasan – Soal Cerita Aplikasi SPLTV Soal Nomor 2 Diketahui SPLK 2 $$\begin{cases} 2x+y+1 & = 0 \\ y & = x^2-4x \end{cases}$$ Tunjukkan bahwa sistem persamaan linear dan kuadrat itu tepat memiliki satu anggota dalam himpunan penyelesaiannya. Carilah himpunan penyelesaiannya itu. Pembahasan Jawaban a Diketahui $$\begin{cases} 2x+y+1 & = 0 && \cdots 1 \\ y & = x^2-4x && \cdots 2 \end{cases}$$Persamaan $1$ dapat diubah menjadi $y = -2x-1$. Substitusikan persamaan ini ke persamaan $2$ sehingga diperoleh $$\begin{aligned} -2x-1 & = x^2-4x \\ 0 & = x^2-2x+1 \end{aligned}$$Sistem tersebut memiliki tepat satu penyelesaian jika persamaan kuadrat di atas memiliki diskriminan yang nilainya $0$. $$\begin{aligned} D & = b^2-4ac \\ & = -2^2-411 \\ & = 4-4 = 0 \end{aligned}$$Terbukti Jawaban b Sebelumnya, kita peroleh persamaan kuadrat $x^2-2x+1 = 0$, yang dapat difaktorkan menjadi $x-1^2 = 0$ sehingga penyelesaiannya adalah $x=1$. Substitusi $x=1$ pada persamaan linearnya sehingga didapat $$y = -2\color{red}{x}-1 = -21-1 = -3 $$Jadi, penyelesaian SPLK tersebut adalah $\boxed{\{1, -3\}}$ [collapse] Soal Nomor 3 Carilah nilai $a$ agar tiap SPLK berikut ini tepat mempunyai satu anggota dalam himpunan penyelesaiannya. a. $\begin{cases} y & = x+a \\ y & = x^2-3x \end{cases}$ b. $\begin{cases} y & = ax+1 \\ y & = \dfrac12x^2+x+1 \end{cases}$ c. $\begin{cases} y & = x+a \\ y & = \dfrac12x^2-2 \end{cases}$ d. $\begin{cases} y & = ax+2 \\ y & = ax^2+x+1 \end{cases}$ Pembahasan Jawaban a Diketahui $$\begin{cases} y & = x+a && \cdots 1 \\ y & = x^2-3x && \cdots 2 \end{cases}$$Substitusikan persamaan $1$ pada persamaan $2$ sehingga diperoleh $$\begin{aligned} x^2-3x & = x+a \\ \underbrace{1}_{\color{red}{a}}x^2\underbrace{-4}_{b}x+\underbrace{-a}_{c} & = 0 \end{aligned}$$SPLK tersebut akan memiliki tepat satu penyelesaian apabila nilai diskriminan $D$ persamaan kuadrat di atas bernilai $0$. $$\begin{aligned} D & = 0 \\ b^2-4\color{red}{a}c & = 0 \\ -4^2-41-a & = 0 \\ 16+4a & = 0 \\ 4a & = -16 \\ a & = -4 \end{aligned}$$Jadi, nilai $a$ yang memenuhi adalah $\boxed{a=-4}$ Jawaban b Diketahui $$\begin{cases} y & = ax+1 && \cdots 1 \\ y & = \dfrac12x^2+x+1 && \cdots 2 \end{cases}$$Substitusikan persamaan $1$ pada persamaan $2$ sehingga diperoleh $$\begin{aligned} \dfrac12x^2+x+1 & = ax+1 \\ \underbrace{\dfrac12}_{\color{red}{a}}x^2+\underbrace{1-a}_{b}x+\underbrace{0}_{c} & = 0 \end{aligned}$$SPLK tersebut akan memiliki tepat satu penyelesaian apabila nilai diskriminan $D$ persamaan kuadrat di atas bernilai $0$. $$\begin{aligned} D & = 0 \\ b^2-4\color{red}{a}c & = 0 \\ 1-a^2-4\left\dfrac12\right0 & = 0 \\ 1-a^2 & = 0 \\ 1-a & = 0 \\ a & = 1 \end{aligned}$$Jadi, nilai $a$ yang memenuhi adalah $\boxed{a=1}$ Jawaban c Diketahui $$\begin{cases} y & = x+a && \cdots 1 \\ y & = \dfrac12x^2-2 && \cdots 2 \end{cases}$$Substitusikan persamaan $1$ pada persamaan $2$ sehingga diperoleh $$\begin{aligned} \dfrac12x^2-2 & = x+a \\ \underbrace{\dfrac12}_{\color{red}{a}}x^2\underbrace{-1}_{b}x+\underbrace{-2-a}_{c} & = 0 \end{aligned}$$SPLK tersebut akan memiliki tepat satu penyelesaian apabila nilai diskriminan $D$ persamaan kuadrat di atas bernilai $0$. $$\begin{aligned} D & = 0 \\ b^2-4\color{red}{a}c & = 0 \\ -1^2-4\left\dfrac12\right-2-a & = 0 \\ 1+4+2a & = 0 \\ 2a & = -5 \\ a & = -\dfrac52 \end{aligned}$$Jadi, nilai $a$ yang memenuhi adalah $\boxed{a=-\dfrac52}$ Jawaban d Diketahui $$\begin{cases} y & = ax+2 && \cdots 1 \\ y & = ax^2+x+1 && \cdots 2 \end{cases}$$Substitusikan persamaan $1$ pada persamaan $2$ sehingga diperoleh $$\begin{aligned} ax^2+x+1 & = ax+2 \\ \underbrace{a}_{\color{red}{a}}x^2+\underbrace{1-a}_{b}x+\underbrace{-1}_{c} & = 0 \end{aligned}$$SPLK tersebut akan memiliki tepat satu penyelesaian apabila nilai diskriminan $D$ persamaan kuadrat di atas bernilai $0$. $$\begin{aligned} D & = 0 \\ b^2-4\color{red}{a}c & = 0 \\ 1-a^2-4a-1 & = 0 \\ 1-2a+a^2+4a & = 0 \\ a^2+2a+1 & = 0 \\ a+1^2 & = 0 \\ a & = -1 \end{aligned}$$Jadi, nilai $a$ yang memenuhi adalah $\boxed{a=-1}$ [collapse] Soal Nomor 4 Carilah batas-batas nilai $a$ agar setiap SPLK berikut ini sekurang-kurangnya memiliki satu anggota himpunan penyelesaian. a. $\begin{cases} y & = 2x+a \\ y & = x^2-4x+5 \end{cases}$ b. $\begin{cases} 3x+y & = -1 \\ y^2-2ax & = 0 \end{cases}$ Pembahasan Jawaban a Diketahui $$\begin{cases} y & = 2x+a && \cdots 1 \\ y & = x^2-4x+5 && \cdots 2 \end{cases}$$Substitusikan persamaan $1$ pada persamaan $2$ sehingga diperoleh $$\begin{cases} x^2-4x+5 & = 2x+a \\ \underbrace{1}_{\color{red}{a}}x^2\underbrace{-6}_{b}x+\underbrace{5-a}_{c} & = 0 \end{cases}$$SPLK tersebut akan memiliki setidaknya satu penyelesaian jika persamaan kuadrat di atas memiliki nilai diskriminan $D \geq 0$. Dengan demikian, kita tuliskan $$\begin{aligned} D & \geq 0 \\ b^2-4\color{red}{a}c & \geq 0 \\ -6^2-415-a & \geq 0 \\ 36-20+4a & \geq 0 \\ 16+4a & \geq 0 \\ 4a & \geq -16 \\ a & \geq -4 \end{aligned}$$Jadi, batas nilai $a$ agar SPLK ini memiliki sekurang-kurangnya satu anggota himpunan penyelesaian adalah $\boxed{a \geq -4}$ Jawaban b Diketahui $$\begin{cases} 3x+y & = -1 && \cdots 1 \\ y^2-2ax & = 0 && \cdots 2 \end{cases}$$Persamaan $1$ dapat ditulis menjadi $y = -1-3x$. Substitusikan persamaan ini pada persamaan $2$ sehingga diperoleh $$\begin{cases} -1-3x^2-2ax & = 0 \\ 1+6x+9x^2-2ax & = 0 \\ \underbrace{9}_{\color{red}{a}}x^2+\underbrace{6-2a}_{b}x+\underbrace{1}_{c} & = 0 \end{cases}$$SPLK tersebut akan memiliki setidaknya satu penyelesaian jika persamaan kuadrat di atas memiliki nilai diskriminan $D \geq 0$. Dengan demikian, kita tuliskan $$\begin{aligned} D & \geq 0 \\ b^2-4\color{red}{a}c & \geq 0 \\ 6-2a^2-491 & \geq 0 \\ 43-a^2-49 & \geq 0 \\ 3-a^2-9 & \geq 0 && \text{bagi}~4 \\ 3-a^2 & \geq 9 \\ 3-a \leq -3~\text{atau}~& 3-a \geq 3 \\ -a \leq -6~\text{atau}~& -a \geq 0 \\ a \geq 6~\text{atau}~& a \leq 0 \end{aligned}$$Jadi, batas nilai $a$ agar SPLK ini memiliki sekurang-kurangnya satu anggota himpunan penyelesaian adalah $\boxed{a \leq 0~\text{atau}~a \geq 6}$ [collapse] Soal Nomor 5 Carilah nilai $m$ agar tiap SPLK berikut tepat mempunyai satu anggota dalam himpunan penyelesaiannya. a. $\begin{cases} y = x+m \\ x^2+4y^2-4 = 0 \end{cases}$ b. $\begin{cases} y = mx \\ x^2+y^2-8x-4y+16 = 0 \end{cases}$ Pembahasan Jawaban a Diketahui $$\begin{cases} y = x+m & \cdots 1 \\ x^2 + 4y^2-4 = 0 & \cdots 2 \end{cases}$$Substitusikan persamaan $1$ pada persamaan $2$ sehingga diperoleh $$\begin{aligned} x^2+4x+m^2-4 & = 0 \\ x^2+4x^2+2mx+m^2-4 & = 0 \\ 5x^2+8mx+4m^2-4 & = 0 \end{aligned}$$SPLK tersebut akan memiliki tepat satu penyelesaian apabila persamaan kuadrat di atas memiliki nilai diskriminan sama dengan $0$. Kita peroleh $$\begin{aligned} D & = 0 \\ b^2-4ac & = 0 \\ 8m^2-454m^2-4 & = 0 \\ 64m^2-80m^2+80 & = 0 \\ -16m^2 + 80 & = 0 \\ -m^2 + 5 & = 0 && \text{bagi}~16 \\ m^2 & = 5 \\ m & = \pm \sqrt5 \end{aligned}$$Jadi, nilai $m$ yang memuat SPLK tersebut memiliki tepat satu penyelesaian adalah $m = \sqrt5$ atau $m = -\sqrt5$. Jawaban b Diketahui $$\begin{cases} y = mx & \cdots 1 \\ x^2 +y^2-8x-4y+16 = 0 & \cdots 2 \end{cases}$$Substitusikan persamaan $1$ pada persamaan $2$ sehingga diperoleh $$\begin{aligned} x^2+mx^2-8x-4mx+16 & = 0 \\ 1+m^2x^2+-8-4mx+16 & = 0 \end{aligned}$$SPLK tersebut akan memiliki tepat satu penyelesaian apabila persamaan kuadrat di atas memiliki nilai diskriminan sama dengan $0$. Kita peroleh $$\begin{aligned} D & = 0 \\ b^2-4ac & = 0 \\ -8-4m^2-41+m^216 & = 0 \\ 162+m^2-41+m^216 & = 0 \\ 2+m^2-41+m^2 & = 0 && \text{bagi}~16 \\ 4+4m+m^2-4-4m^2 & = 0 \\ -3m^2+4m & = 0 \\ m-3m + 4 & = 0 \\ m = 0~\text{atau}~m & = \dfrac43 \end{aligned}$$Jadi, nilai $m$ yang memuat SPLK tersebut memiliki tepat satu penyelesaian adalah $m = 0$ atau $m = \dfrac43$. [collapse] Soal Nomor 6 Misalkan $p, q$ adalah bilangan real yang bukan nol. Carilah himpunan penyelesaian dari SPLK berikut ini dengan menyatakannya dalam $p$ dan $q$. a. $\begin{cases} px + qy = 0 \\ p^2x^2 + pqx + q^2y^2 = 0 \end{cases}$ b. $\begin{cases} x+y = p+q \\ x^2+y^2+xy-p^2-q^2-pq = 0 \end{cases}$ Pembahasan Jawaban a Diketahui $$\begin{cases} px + qy = 0 & \cdots 1 \\ p^2x^2 + pqx + q^2y^2 = 0 & \cdots 2 \end{cases}$$Persamaan $1$ dapat ditulis kembali menjadi $y = -\dfrac{px}{q}$. Substitusikan pada persamaan $2$. $$\begin{aligned} p^2x^2 + pqx + q^2\color{red}{y}^2 & = 0 \\ p^2x^2 + pqx + q^2\left-\dfrac{px}{q}\right^2 & = 0 \\ p^2x^2 + pqx + \cancel{q^2} \cdot \dfrac{p^2x^2}{\cancel{q^2}} & = 0 \\ 2p^2x^2 + pqx & = 0 \\ px2px + q & = 0 \end{aligned}$$Persamaan terakhir menunjukkan bahwa kita telah memperoleh $$\begin{aligned} px = 0 & \Rightarrow x = 0 \\ 2px + q = 0 & \Rightarrow x = -\dfrac{q}{2p} \end{aligned}$$Masing-masing nilai $x$ ini disubstitusi pada persamaan $y = -\dfrac{px}{q}$. Kita akan memperoleh $$\begin{aligned} x = 0 & \Rightarrow y = -\dfrac{p0}{q} = 0 \\ x = -\dfrac{q}{2p} & \Rightarrow y = -\dfrac{p}{q} \cdot \left-\dfrac{q}{2p}\right = \dfrac12 \end{aligned}$$Jadi, himpunan penyelesaian SPLK tersebut adalah $$\boxed{\left\{0, 0, \left-\dfrac{q}{2p}, \dfrac12\right\right\}}$$Jawaban b Diketahui $$\begin{cases} x+y = p+q & \cdots 1 \\ x^2+y^2+xy-p^2-q^2-pq = 0 & \cdots 2 \end{cases}$$Kedua ruas pada persamaan $1$ dikuadratkan, dan kita akan peroleh $$\begin{aligned} x+y^2 & = p+q^2 \\ x^2+2xy+y^2 & = p^2+2pq+q^2 \\ x^2+y^2+2xy-p^2-q^2-2pq & = 0 && \cdots 3 \end{aligned}$$Sekarang, persamaan $3$ dikurangi persamaan $2$. $$\begin{aligned} \! \begin{aligned} x^2+y^2+2xy-p^2-q^2-2pq & = 0 \\ x^2+y^2+xy-p^2-q^2-pq & = 0 \end{aligned} \\ \rule{7 cm}{ – \\ \! \begin{aligned} xy-pq & = 0 \\ xy & = pq \end{aligned} \end{aligned}$$Dengan demikian, kita dapat tuliskan $$\begin{cases} x+y & = p+q && \cdots 1 \\ xy & = pq && \cdots 2 \end{cases}$$Dengan demikian, didapat dua penyelesaian, yaitu $x, y = p, q$ atau $x, y = q, p$. Jadi, himpunan penyelesaian SPLK tersebut adalah $$\boxed{\{p, q, q, p\}}$$ [collapse] Soal Nomor 7 Tentukan himpunan penyelesaian SPLK berikut. a. $\begin{cases} y = x + 1 \\ x^2+y^2-25 = 0 \end{cases}$ b. $\begin{cases} 2x-y-3 = 0 \\ x^2-y^2 = 0 \end{cases}$ c. $\begin{cases} 3x-y-16 = 0 \\ x^2+y^2-6x+4y-12 = 0 \end{cases}$ Pembahasan Jawaban a Diketahui SPLK $$\begin{cases} y = x + 1 & \cdots 1 \\ x^2+y^2-25 = 0 & \cdots 2 \end{cases}$$Persamaan $1$ disubstitusikan pada persamaan $2$. $$\begin{aligned} x^2+\color{red}{y}^2-25 & = 0 \\ x^2+x+1^2-25 & = 0 \\ x^2+x^2+2x+1-25 & = 0 \\ 2x^2 +2x-24 & = 0 \\ x^2+x-12 & = 0 \\ x+4x-3 & = 0 \\ x = -4~\text{atau}~x & = 3 \end{aligned}$$Jika $x = -4$, maka diperoleh $y = -3$. Jika $x = 3$, maka diperoleh $y = 4$. Jadi, HP SPLK tersebut adalah $\boxed{\{-4, -3, 3, 4\}}$ Jawaban b Diketahui SPLK $$\begin{cases} 2x-y-3 = 0 & \cdots 1 \\ x^2-y^2 = 0 & \cdots 2 \end{cases}$$Persamaan $1$ dapat ditulis menjadi $y = 2x-3$. Substitusikan pada persamaan $2$. $$\begin{aligned} x^2-\color{red}{y}^2 & = 0 \\ x+\color{red}{y}x-\color{red}{y} & = 0 \\ x+2x-3x-2x-3 & = 0 \\ 3x-3-x+3 & = 0 \\ x = 1~\text{atau}~x & = 3 \end{aligned}$$Jika $x = 1$, maka diperoleh $y = -1$. Jika $x = 3$, maka diperoleh $y = 3$. Jadi, HP SPLK tersebut adalah $\boxed{\{1, -1, 3, 3\}}$ Jawaban c Diketahui SPLK $$\begin{cases} 3x-y-16 = 0 & \cdots 1 \\ x^2+y^2-6x+4y-12 = 0 & \cdots 2 \end{cases}$$Persamaan $1$ dapat ditulis menjadi $y = 3x-16$. Substitusikan pada persamaan $2$. $$\begin{aligned} x^2+\color{red}{y}^2-6x+4\color{red}{y}-12 & = 0 \\ x^2 + 3x-16^2-6x + 43x-16-12 & = 0 \\ x^2 + 9x^2-96x+256-6x + 12x-64-12 & = 0 \\ 10x^2-90x+180 & = 0 \\ x^2-9x+18 & = 0 && \text{bagi}~10 \\ x-3x-6 & = 0 \end{aligned}$$Jika $x = 3$, maka diperoleh $y = -7$. Jika $x = 6$, maka diperoleh $y = 2$. Jadi, HP SPLK tersebut adalah $\boxed{\{3, -7, 6, 2\}}$ [collapse] Sistem persamaan kuadrat dan kuadrat atau disingkat dengan SPKK merupakan sistem persamaan yang terdiri atas dua persamaan kuadrat yang masing-masing memuat dua variabel. SPKK memiliki beberapa macam bentuk, tetapi dalam artikel ini kita akan lebih banyak membahas bentuk yang paling sederhana, yaitu kedua persamaan kuadrat berbentuk eksplisit. Bentuk umumnya adalah sebagai berikut. y = ax2 + bx + c ……………. bagian kuadrat pertama y = px2 + qx + r ……………. bagian kuadrat kedua Dengan a, b, c, p, q, dan r merupakan bilangan-bilangan real. Secara umum, untuk memperoleh penyelesaian SPKK dilakukan langkah-langkah sebagai berikut. Langkah 1 Subtitusikan bagian kuadrat persamaan pertama ke bagian kuadrat yang kedua atau sebaliknya sehingga diperoleh persamaan kuadrat baru. Langkah 2 Selesaikan persamaan kuadrat baru yang diperoleh pada langkah pertama. Langkah 3 Subtitusikan nilai x yang diperoleh pada langkah kedua ke persamaan pertama atau persamaan kedua. Untuk mempermudah perhitungan, silahkan kalian pilih persamaan kuadrat yang lebih sederhana. Contoh Soal 1 Tentukan himpunan penyelesaian SPKK berikut dan gambarkan sketsa grafik tafsiran geometrinya. y = x2 y = 2x2 – 3x Jawab Subtitusikan bagian kuadrat yang pertama y = x2 ke bagian kuadrat yang kedua y = 2x2 – 3x sehingga diperoleh ⇒ x2 = 2x2 ⇒ 2x2 – x2 – 3x = 0 ⇒ x2 – 3x = 0 ⇒ xx – 3 = 0 ⇒ x = 0 atau x = 3 Selanjutnya, subtitusikan nilai x = 0 dan x = 3 ke bagian kuadrat yang pertama y = x2. Untuk x = 0 diperoleh ⇒ y = x2 ⇒ y = 02 ⇒ y = 0 Untuk x = 3 diperoleh ⇒ y = x2 ⇒ y = 32 ⇒ y = 9 Dengan demikian, himpunan penyelesaian SPKK itu adalah {0, 0, 3, 9}. Anggota-anggota dari himpunan penyelesaian SPKK tersebut secara geometris dapat ditafsirkan sebagai koordinat titik potong antara parabola y = x2 dengan parabola y = 2x2 – 3x. Untuk lebih jelasnya, perhatikan gambar di bawah ini. Contoh Soal 2 Tentukan himpunan penyelesaian SPKK berikut dan gambarkan sketsa grafik tafsiran geometrinya. y = x2 – 1 y = x2 – 2x – 3 Jawab Subtitusikan bagian kuadrat yang pertama y = x2 – 1 ke bagian kuadrat yang kedua y = x2 – 2x – 3 sehingga diperoleh ⇒ x2 – 1 = x2 – 2x – 3 ⇒ x2 – x2 = –2x – 3 + 1 ⇒ 2x = –2 ⇒ x = –1 Selanjutnya, subtitusikan nilai x = –1 ke persamaan y = x2 – 1 sehingga diperoleh ⇒ y = x2 – 1 ⇒ y = –12 – 1 ⇒ y = 1 – 1 ⇒ y = 0 Dengan demikian, himpunan penyelesaian dari SPKK tersebut adalah {–1, 0}. Tafsiran geometrinya adalah grafik parabola y = x2 – 1 dan parabola y = x2 – 2x – 3 berpotongan di satu titik, yaitu di –1, 0. Perhatikan gambar di bawah ini. Contoh Soal 3 Tentukan himpunan penyelesaian SPKK berikut dan gambarkan sketsa grafik tafsiran geometrinya. y = −2x2 y = x2 + 2x + 1 Jawab Subtitusikan bagian kuadrat yang pertama y = −2x2 ke bagian kuadrat yang kedua y = x2 + 2x + 1 sehingga diperoleh ⇒ −2x2 = x2 + 2x + 1 ⇒ 2x2 + x2 + 2x + 1 = 0 ⇒ 3x2 + 2x + 1 = 0 Persamaan kuadrat ini tidak mempunyai akar real karena nilai diskriminannya adalah bilangan negatif. Perhatikan perhitungan berikut ini. D = b2 – 4ac Dengan a = 3, b = 2 dan c = 1 sehingga ⇒ D = 22 – 431 ⇒ D = 4 – 12 ⇒ D = –8 Dengan demikian, himpunan penyelesaian dari SPKK tersebut adalah himpunan kosong atau ditulis sebagai {∅}. Tafsiran geometrisnya adalah grafik parabola y = −2x2 dan y = x2 + 2x + 1 tidak berpotongan dan tidak bersinggungan seperti yang diperlihatkan pada gambar berikut ini. Contoh Soal 4 Misalkan diketahui SPKK berikut ini. y = 3x2 + m y = x2 – 2x – 8 Tentukan nilai m agar SPKK tepat mempunyai satu anggota dalam himpunan penyelesaiannya. Tentukan himpunan penyelesaian yang dimaksud itu. Jawab Banyaknya anggota himpunan penyelesaian dari suatu SPKK ditentukan berdasarkan nilai diskriminan, dengan kriteria sebagai berikut. 1 Jika D > 0, SPKK mempunyai dua himpunan penyelesaian parabola berpotongan di dua titik. 2 Jika D = 0, SPKK mempunyai satu himpunan penyelesaian parabola berpotongan di satu titik atau saling bersinggungan. 3 Jika D < 0, SPKK tidak mempunyai himpunan penyelesaian parabola tidak berpotongan atau bersinggungan. Dengan demikian, agar SPKK tersebut tepat memiliki satu himpunan penyelesaian maka nilai diskriminan dari persamaan kuadrat gabungan harus sama dengan nol. Persamaan kuadrat gabungan didapat dengan mensubtitusikan persamaan kuadrat y = 3x2 + m ke persamaan kuadrat y = x2 – 2x – 8 sehingga diperoleh ⇒ 3x2 + m = x2 – 2x – 8 ⇒ 3x2 – x2 + 2x + 8 + m = 0 ⇒ 2x2 + 2x + 8 + m = 0 Dari sini kita peroleh persamaan kuadra gabungan, dengan nilai a = 2, b = 2 dan c = 8 + m. Agar persamaan kuadrat ini hanya memiliki satu himpunan penyelesaian maka D = 0, sehingga ⇒ b2 – 4ac = 0 ⇒ 22 – 428 + m = 0 ⇒ 4 – 88 + m = 0 ⇒ 4 – 64 – 8m = 0 ⇒ –60 – 8m = 0 ⇒ 8m = –60 ⇒ m = –60/8 ⇒ m = –15/2 ⇒ m = –7,5 Dengan demikian nilai m adalah –7,5. Sekarang masukkan nilai m yang telah diperoleh ke persamaan kuadrat gabungan sehingga diperoleh persamaan sebagai berikut. ⇒ 2x2 + 2x + 8 + m = 0 ⇒ 2x2 + 2x + 8 + –7,5 = 0 ⇒ 2x2 + 2x + 0,5 = 0 Untuk menghilangkan desimal, kedua ruas kita kalian 2 ⇒ 4x2 + 4x + 1 = 0 Kemudian, kita faktorkan untuk memperoleh nilai x ⇒ 2x + 12 = 0 ⇒ 2x + 1 = 0 ⇒ 2x = −1 ⇒ x = −1/2 Selanjutnya, subtitusikan nilai x = −1/2 ke persamaan y = x2 – 2x – 8 sehingga diperoleh ⇒ y = x2 – 2x – 8 ⇒ y = −1/22 – 2−1/2 – 8 ⇒ y = 1/4 + 1 – 8 ⇒ y = 1/4 –7 ⇒ y = −27/4 Dengan demikian, himpunan penyelesaian dari SPKK tersebut adalah {−1/2, −27/4}. Pada kesempatan kali ini ID-KU akan memposting artikel tentang "MATERI LENGKAP Sistem Persamaan Linear dan Kuadrat". Pada postingan ini, akan dijelaskan cara menyelesaikan soal-soal yang berkaitan dengan sistem persamaan linear. 1. Sistem Persamaan Linear a. Persamaan Linear satu variabel adalah kalimat terbuka yang menyatakan hubungan sama dengan dan hanya memiliki satu variabel berpangkat satu. Benjtuk umum persamaan linear satu variabel adalah ax + b = c, dengan a ≠0 b. Persamaan linear dua veriabel adalah persamaan linear yang mengandung variabel dengan pangkat masing-masing variabel sama dengan satu. Bentuk umum persamaan linear dua variabel ax + by = c, dengan a ≠0 dan b≠0 2. Sistem Persamaan Linear Dua Variabel SPLDV Sistem persamaan linear dua veriabel adalah sistem persamaan yang menandung paling sedikit sepasang dua buah persamaan linear dua vartiabel yang hanya mempunya satu persamaan linear dua variabel dengan variabel x dan y secara umum ditulis sebagai berikut dengan Untuk menyelesaikan sistem persamaan linear dua variabel dapat digunakan metode-metode di bawah ini a. Metode grafrik b. Metode subtitusi c. Metode eliminasi d. Metode eliminasi-subtitusi a. Metode Grafik Metode grafik adalah metode penyelesaian SPLDV yang dilakukan dengan cara menggambar grafik dari kedua persamaan tersebut yang kemudian menentukan titik potongnya. Langkah-langkah menggambar grafik Menggambar grafik masing-masing persamaan pada sebuah bidang Cartesisus dengan menggunakan metode titik potong sumbu Bila kedua garis berpotongan pada sebuah titik maka himpunan penyelesaiannya tepat memiliki sebuah anggota, yaitu {x,y}. Bila kedua garis itu sejajar tidak berpotongan maka himpunan penyelesaiannya tidak memiliki anggota, yaitu {} himpunan kosong Bila kedua garis itu berimpit, maka himpanan penyelesaiannya memiliki anggota yang tak banyak hingganya. Contoh soal EBTANAS 2000 Jika x dan y memenuhi sistem persamaan Nilai x + y sama dengan ..... A. 6 B. 4 C. -2 D. -6 E. -8 Pembahasan Grafik persamaan garis 2x + y = 5 * Titik potong dengan sumbu x, maka y = o 2x + 0 = 5 2x = 5 x = 5/2 Titik potongnya 5/2 , 0 * Titik potong dengan sumbu y, maka x = 0 20 + y = 5 y = 5 Titik potong 0,5 Grafik persamaan garis 3x - 2y = -3 * Titik potong dengan sumbu x, maka y = 0 3x - 20 = -3 x = -1 Titik potong -1,0 * Titik potong dengan sumbu y, maka x = 0 30 - 2y = -3 y = 3/2 Titik potong 0, 3/2 Garis 2x + y = 5 dan garis 3x - 2y = -3 berpotongan di titik 1,3 yang berarti x = 1 dan y = 3. Jadi, x + y = 1 + 3 = 4 -> Jawaban B. 4 b. Metode Subtitusi Metode subtitusi adalah metode penyelesaian SPLDV dengan cara menggantikan satu variabel dengan variabel dari persamaan lain. Langkah-langkah menggunakan metode subtitusi Pilih salah satu persamaan yang paling sederhana kemudian nyatakan x sebagai fungsi y atau y sebegai fungsi x Subtitusikan x atau y pada langkah 1 ke persamaan yang lainnya Contoh Soal Himpunan penyelesaian sistem persamaan adalah . . . . . A. {2,2} B. {2,4} C. {4,2} D. {1,2} E. {2,1} Pembahasan Dari persamaan 4x + y = 12 y = 12 - 4x .......1 Subtitusi persamaan 1 ke persamaan 2x + y = 8, diperoleh 2x + 12 - 4x = 8 2x + 12 - 4x = 8 -2x = 8 - 12 -2x = -4 x = 2 Subtitusi nilai x = 2 ke persamaan 1 diperoleh y = 12 - 42 y = 12 - 8 y = 4 Jadi, himpunan penyelesaiannya adalah {2,4} -> Jawaban B c. Metode Eliminasi Metode eliminasi adalah metode penyelesaian SPLDV dengan cara menghilangkan salah satu variabel. Langkah-langkah menggunakan metode eliminasi 1. Perhatikan koefisien x atau y a. Jika koefisiennya sama i Lakukan operasi pengurangan untuk tanda yang sama ii Lakukan operasi penjumlahan untuk tanda yang berbeda b. Jika koefisiennya berbeda, samakan koefisiennya dengan cara mengalikan persamaan-persamaan dengan konstanta yang sesuai, lalu lakukan operasi penjumlahan atau pengurangan seperti pada langkah sebelumnya. 2. Lakukan kembali langkah 1 untuk mengeliminasi variabel lainnya. Contoh soal Himpunan penyelesaian sistem persamaan adalah { Nilai p - q = ..... A. 0 B. 1 C. -1 D. 2 E. -2 Pembahasan Mengeliminasi variabel x 7x + 5y = 2 x5 35x + 25y = 10 5x + 7y = -2 x7 35x + 49y = -14 - -24y = 24 y = -1 Mengeliminasi variabel y 7x + 5y = 2 x7 49x + 35y = 14 5x + 7y = -2 x5 25x + 35y = -10 - 24x = 24 x = 1 Himpunan penyelesaiannya {p,q} = {-1,1} Nilai p - q = 1-1 = 2 -> Jawaban D d. Metode Eliminasi-Subtritusi Metode eliminasi-subtitusi adalah metode penyelesaian SPLDV dengan cara menggabungkan metode eliminasi dan metode subtitusi. Metode elminasi digunakan untuk mendapatkan variabel pertama dan hasilnya disubtitusikan ke persamaan untuk mendapatkan variabel kedua. Contoh Soal Di sebuah toko, Rabil membeli 4 barang A dan 2 barang B dengan hargar Rp 4000,- Mazlan membeli 10 barang A dan 4 barang B dengan harga Rp Alif ingin membeli sebuah barang A dan sebuah barang B dengan harga.... Pembahasan Misal Barang A = A dan Barang B = B Diketahui Rabil => 4A + 2B = 4000 8A + 4B = 8000 Mazlan => 10A + 4B = 9500 Alif => A + B = .....? Dengan menggunakan eliminasi 8A + 4B = 800010A + 4B = 9500 - -2A = -1500 A = 750 Subtitusi nilai A = 750 ke salah satu persamaan, diperoleh 4750 + 2B = 4000 3000 + 2B = 4000 2B = 1000 B = 500 Maka A + B = 750 + 500 = Jadi, harga sebuah barang A dan sebuah barang B adalah Rp

soal dan pembahasan sistem persamaan linear dan kuadrat dua variabel